Review of Australian Sarginae Soldier Fly Genera (Diptera: Stratiomyidae), with First Records of Cephalochrysa, Formosargus and Microchrysa

BRYAN D. LESSARD1, DAVID K. YEATES1 and NORMAN E. WOODLEY2

1 Australian National Insect Collection, National Research Collections Australia, CSIRO, PO Box 1700, Canberra ACT 2601, Australia
2 Department of Entomology, Smithsonian Institution, c/o 8920 S Bryeler Ct., Hereford, AZ 85615, United States of America

Abstract. A taxonomic treatment to genera is provided for the Australian members of the soldier fly subfamily Sarginae. This includes an updated identification key for the Australian genera, along with the diagnosis and illustration of Ptecticus Loew, 1855 and Sargus Fabricius, 1798, and three newly recorded genera: Cephalochrysa Kertész, 1912 (Cephalochrysa gselli (Hill, 1919) comb. nov.), Formosargus James, 1939 and Microchrysa Loew, 1855. Two new species are also described: Formosargus melanogrammus Lessard & Woodley, sp. nov. and Microchrysa wrightae Lessard & Woodley, sp. nov. A new Australian record is presented for Ptecticus longipes (Walker, 1861), also known from New Guinea and the Solomon Islands, and a taxonomic change is made for Formosargus lineata (de Meijere, 1913) comb. nov., from New Guinea, transferred from its previous position within Chrysochlora Latreille, 1829. Five genera and 10 species of Sarginae are now recognized from Australia.

Introduction

The Sarginae are a moderate-sized subfamily of soldier flies, with more than 530 species described in 23 genera, distributed on every continent, excluding Antarctica (Woodley, 2001). Prior to this study, the Australian Sarginae comprised only two cosmopolitan genera, Ptecticus Loew, 1855 and Sargus Fabricius, 1798 (Woodley, 2001). Little is known regarding the biology of the Australian fauna, although sargines from overseas are usually associated with vegetation and have an underappreciated role in decomposition. Adults swarm during mating and can be found on vegetation and flowers (Rozkošný, 1982; Woodley, 2001). Females are usually located near larval food sources and oviposit in decaying fruits, bases of palm leaves and freshly cut logs, whereas males frequent these sites in search of mates (Woodley, 2001). Larvae are often associated with decaying organic matter, including grass, compost heaps (Woodley, 2001) and animal faeces (Rozkošný, 1982).

Woodley (2001) defined the Sarginae as usually slender flies with the antennal flagellum formed of five flagellomeres, with the first four reduced, compact and rounded to form a basal complex, and the apical flagellomere being aristate, and wings with crossvein m-cu connected to vein M4 by presence of dM3+4 (previously bm-cu; see Lessard et al., 2019). He noted that African and Madagascan flies vary by having additional flagellomeres and by lacking wing vein dM3+4 (i.e., Gongrosargus Lindner, 1959; Hauser et al., 2017: 41, fig. 182), leading him to call for a worldwide generic revision. In his phylogenetic hypothesis based on morphology (Woodley, 2001: 17, fig. 1), the Sarginae recovered as sister to the Chrysochlora, forming a
Records of the Australian Museum (2020) Vol. 72

Figure 1. Updated wing terminology of the Stratiomyidae annotated on Psecticus rogans (Walker, 1858), male, dorsal view. Abbreviations: A1, first branch of anal vein; al, alula; dM1–2, discal vein between r-m and M1; dM2, discal vein between M1 and M2; dM3, discal vein between M1 and M3; dM3+4, vein between M1+2 and m-cu; or m-cu and M2; br, basal costal cell; bm, basal medial cell; br, basal radial cell; C, costal vein; c, costal cell; Cu, cubital vein; CuA, anterior branch of cubital vein; CuA+CuP, anterior branch of cubital vein + posterior branch of cubital vein; CuP, posterior branch of cubital vein; cup, posterior cubital cell; d, discal cell; H, humeral crossvein; M, medial vein; M1, first medial branch; M1+2, discal vein between r-m and M1; M2, second medial branch; m1, first medial cell; M1+2, discal vein between r-m and M1+2; M2, second medial branch; m2, second medial cell; M3, third medial branch; m3, third medial cell; M4, fourth medial branch; m4, fourth medial cell; m-cu, medial-cubital crossvein; Mbc, basal costal cell; M1+2, discal vein between r-m and M1+2; M2, second medial branch; m1, first medial cell; M1+2, discal vein between r-m and M1+2; M2, second medial branch; m2, second medial cell; M3, third medial branch; m3, third medial cell; M4, fourth medial branch; m4, fourth medial cell; Mbc, basal costal cell; M1+2, discal vein between r-m and M1+2; M2, second medial branch; m1, first medial cell; M1+2, discal vein between r-m and M1+2; M2, second medial branch; m2, second medial cell; M3, third medial branch; m3, third medial cell; M4, fourth medial branch; m4, fourth medial cell.

well-supported monophyletic clade with the Hermetiinae, supported by the morphological characters of the concave posterior surface of the head, elongation of the anterpronotum and unarmed scutellum.

The Sarginae appears to be monophyletic in the only molecular study on soldier fly phylogeny, one based on two genes (Brammer & von Dohlen, 2007: fig. 3). In this study, the Hermetiinae, Chrysochlorinae and Sarginae formed a strongly supported monophyletic clade, with the addition of the Nemotelinae which recovered as sister to the Sarginae. In the subsequent morphological analysis of Brammer & von Dohlen (2010: fig. 3), the Sarginae were not monophyletic, instead forming a series of successive clades sister to a larger clade containing Hermetiinae + Clitellariinae (paraphyletic clade 2) + Chrysochlorinae. In the last two studies, only four of the 23 genera of Sarginae were sampled and did not include members from Australia, therefore, the phylogenetic relationships remain unclear for the Australian Sarginae.

The taxonomy of the Australian soldier flies has received little attention and the number of taxonomic treatments for the Sarginae are limited. For the genus Sargus, only a handful of publications have each described a single species without providing a clear generic diagnosis (White, 1916; Hill, 1919; Hardy, 1932). The largest revision of Australia sargines was conducted by Daniels (1979) on Psecticus from Australia, New Guinea and the Bismarck and Solomon Islands, with the description of three species from Australia, however, these were later synonymized by Rozkošný & de Jong (2003: 243). Therefore, there is a strong need for a generic revision of the Australian genera.

This paper is part of a recent surge of renewed taxonomic interest revising the genera of the Australian soldier flies (Lessard et al., 2018, 2019, 2020). A taxonomic treatment for the Australian sargines is provided to clarify the generic limits and identification of the regional fauna. An updated key to Australian sargine genera is presented, along with the diagnosis and illustration of the Australian fauna of Psecticus and Sargus, and the first Australian records of the newly recorded genera Cephalochrysa Kertész, 1912 (Cephalochrysa gselli (Hill, 1919) comb. nov.), Formosargus James, 1939 (also Oriental) and Microchrysa Loew, 1855 (cosmopolitan). Two new species are described: Formosargus melanogrammus Lessard & Woodley, sp. nov. and Microchrysa wrightae Lessard & Woodley, sp. nov. A new Australian record is presented for Psecticus longipes (Walker, 1861), also known from New Guinea and the Solomon Islands, and a taxonomic change is made for Formosargus lineata (de Meijere, 1913) comb. nov., from New Guinea, transferred from its previous position within Chrysochlora Latreille, 1829. Five genera and 10 species of Sarginae are now recognized from Australia.

Materials and methods

Specimens were examined using a Zeiss dissecting microscope. Photographs were taken on a Dun Inc. BK Imaging—PLUS Lab System using a Canon 65 mm lens, stacked in Zerene Stacker v. 1.0 software and processed in Adobe Photoshop CS6 to obtain a fully-sharpened image.

Morphological terminology follows Hauser et al. (2017), with updated wing venation terminology following Lessard et al. (2019) (Fig. 1). Frontal index was calculated by dividing...
the width at the middle of the frons by the distance from the anterior ocellus to the base of antennae (Mason & Rozkošný, 2008). Body lengths are given exclusive of antennae.

Genitalia were prepared by dissecting and incubating the apical portion of the abdomen in KOH at 100°C overnight, followed by a wash in distilled water. After examination in glycerine, the genitalia were transferred to KY jelly and imaged on a Leica M205A microscope and stacked using Helicon Focus 5.3 software. Genitalia were then transferred into glycerine and stored in microvials pinned below each specimen. Holotype specimen labels are quoted verbatim (“”) and individual lines are separated by forward slashes (/). Type specimens were imaged for all genera, excluding P. longipes (represented by non-type specimens), and Ptecticus rogans (Walker, 1858) (represented by the holotype male and paratype female of the previously synonymized species Ptecticus queenslandicus Daniels, 1979; syn. Rozkošný & de Jong, 2003), where type specimens were unavailable for photography. The subfamily and generic diagnoses are given for the Australian fauna only. Collection localities for all species, including novel primary type localities (labelled), are presented in Fig. 2.

The following abbreviations are used in the text: HT, holotype; LT, lectotype; PT, paratype; NP, Australian national park; the Australian states New South Wales, Northern Territory and Queensland are NSW, NT and Qld. Geospatial coordinates of certain labels should be read as degrees and minutes not degrees to two decimal places e.g., “15.03S 145.09E” on D. H. Colless labels = 15°03'S 145°09'E. Updates are proposed for insertion into Woodley’s (2001) catalogue. Collections and museums are abbreviated as follows:

AMS Australian Museum, Sydney
ANIC Australian National Insect Collection, Canberra
BMNH The Natural History Museum, London
BPBM Bernice P. Bishop Museum, Honolulu
DEI Deutsches Entomologisches Institut, Eberswalde
LSL Collection of the Linnean Society, London
NHNL National Museum of Natural History Naturalis, Leiden
QM Queensland Museum, Brisbane
RNH Nationaal Natuurhistorisch Museum, now in NHNL
SAMA South Australian Museum, Adelaide
USNM Smithsonian Institution, Washington
UZMC Zoologisk Museum, Copenhagen University, Copenhagen
ZMAN Zoölogisch Museum Amsterdam, now in NHNL

Taxonomy

Subfamily Sarginae

Diagnosis. Small to large flies (length 5–16 mm), usually slender, dull yellowish brown or metallic purplish or greenish blue (Figs 3–14). Head large, wider than thorax, separated from thorax by the well-developed, anteriorly produced antepronotum; occiput strongly concave; eyes usually superficially appearing as bare, with short, relatively sparse hair-like setae visible under higher magnification, occasionally dense, holoptic or narrowly dichoptic in males, dichoptic in females, ommatidia slightly wider anteriorly, with or without distinct demarcation of change in dorsoventral size; ocellar triangle prominent. Males with upper frons narrow, triangular; lower frons diverging or converging ventrally at margins, occasionally bulbous and anteriorly produced; females with narrow to wide
frons (index 1.4–4.8), margins parallel-sided or converging ventrally. Face narrow to wide, rounded and not visible in profile, or with a small, anteroventrally produced, beak-like protuberance that is narrowly visible in profile, usually with a well-defined horizontal impression separating face from ventrally receding oral margins, with two distinct, tentorial pits visible at lateral margins below horizontal impression. Antennae inserted below middle of head, short (equal to length of head) or long (exceeding length of head), scape cylindrical and apically expanded, pedicel sometimes expanded apically on inner surface, flagellum with five flagellomeres, first four flagellomeres compact, rounded and laterally compressed to form an ovoid basal complex, apical margin usually with short, dense, hair-like setae, apical flagellomere aristate, arising anterodorsally from basal complex, usually with two prominent, moderately long, basal hair-like setae. Palpi short, two-segmented, second segment ovoid, often obscured within oral cavity. Proboscis short, labella fleshy. Palpi short, two-segmented, second segment ovoid, often obscured within oral cavity. Proboscis short, labella fleshy. Scutum elongate and slender, about 1.1–1.2 times as long as wide, shining, yellowish brown or strongly metallic bluish purple or greenish, hair-like setae usually dense; scutellum slightly raised or in same plane as scutum, short, about 0.4–0.5 times as long as wide, rounded to almost triangular, posteromedially pointed, unarmed, with hair-like setae; mediotergite well-developed, rounded, subshining, visible in both dorsal and lateral views, usually with some hair-like setae. Legs slender, without significant modification. Wings usually hyaline, occasionally infuscated with brown, set with microtrichia; \(R_{2+3} \) arising proximal or distal to \(r-m \); \(R_{4} \) always present; four medial veins strong or faint, terminating before or reaching margin, and issued from discal cell, \(m-cu \) usually connected to \(M_{4} \) and separated from discal cell by \(dM_{1+4} \), occasionally connected to discal cell; post-tegula present, with small dorsal tuft of hair-like setae; lower calypter with or without small membranous strap-like lobe at base of wings. Abdomen yellowish brown or metallic bluish purple or green, ovoid (about 1.2–1.4 times as long as wide) or elongate and slender (about 2–3 times as long as wide), with 5 large, well-defined tergites, usually with dense hair-like setae. Females with two segmented cerci.

Remarks. Closely related to the Hermetiinae and Chrysoclorinidae, sharing the posterior surface of the head being concave, elongation of the anteropronotum, and unarmed scutellum, but distinguished by the combination of the following characters: antennae with five flagellomeres, the apical flagellomere being aristate; wings with \(M_{4} \) issued separately from discal cell by having \(m-cu \) connected to \(M_{5} \).

Included genera. There are currently five Sarginae genera recognized from Australia: *Ptecticus* Loew, 1855 (cosmopolitan), *Sargus* Fabricius, 1798 (cosmopolitan), and the newly recorded genus *Formosargus* James, 1939 (also Oriental), *Cephalochrysa* Kertész, 1912 (cosmopolitan) and *Microchrysa* Loew, 1855 (cosmopolitan) (Woodley, 2001).

Australian distribution of Sarginae. New South Wales, northern NT and Queensland (Fig. 2).

Key to Australian Sarginae genera

1. Wings with \(R_{2+3} \) arising proximal to or above \(r-m \); membranous strap-like lobe absent at base of wings; yellowish brown flies, usually not metallic ... 2

2. Wings with \(R_{2+3} \) arising distal to \(r-m \), usually beyond discal cell; membranous strap-like lobe present at base of wings; metallic flies ... 3

3. Frons wide and almost parallel in females; face slightly anteroventrally produced to form a small beak-like protuberance visible in profile view; scutum with a distinct black medial vitta; wings with vein \(M \) weak and nearly unpigmented between cells \(br \) and \(bm \), \(M_{1} \) and \(M_{4} \) very weakly developed, \(M_{4} \) connected to discal cell (i.e. \(dM_{1+4} \) absent); alula reduced, almost linear (Fig. 4) .. Formosargus James, 1939

3. Upper frons converging ventrally in females; face evenly rounded in profile view; scutum concolorous yellowish brown (Figs 9, 10) or dully metallic (*P. longipes*; Figs 7, 8), without any distinct markings; wings with vein \(M \) noticeably pigmented between cells \(br \) and \(bm \), \(M_{1} \) and \(M_{4} \) well developed, \(M_{4} \) separated from discal cell at least slightly by \(dM_{3+4} \); alula large and apically expanded ... Ptecticus Loew, 1855

3. Head anteriorly produced in dorsal view, more circular and less than 1.5 times as wide as high in frontal view; occiput narrowly visible in dorsal view, with a prominent, posteriorly projecting fringe of hair-like setae; frons extremely narrow in females (index > 4), narrowly dichoptic in males by width of anterior ocellus; frontal ocellus distant from posterior ocelli, forming an elongated triangle; wings with all medial veins strong; \(CuA \) strongly curved, petiole vein \(CuA+CuP \) relatively long; apical half of alula set with microtrichia; abdomen slender elongate, about twice as long as wide (Figs 11–15) ... Sargus Fabricius, 1798
Genus Cephalochrysa Kertész, 1912

Fig. 3

Cephalochrysa Kertész, 1912: 99. Type species Sargus hovas
Bigot, 1859, by original designation. See Woodley (2001: 186) for full synonymy.

Diagnosis. Moderately sized (length 7 mm), metallic purplish blue flies, with the occiput well-developed dorsally in females, and ocelli in the form of an equilateral triangle. Regarding the Australian fauna, it is most similar to Microchrysa, but can be distinguished by the: larger size; head dorsoventrally compressed in anterior view, about 0.6 times as high as wide; lower frons with a distinct triangular callus diverging ventrally towards base of antennae; wing cell r_1 stained yellow; all medial veins faint (Figs 5, 6) ... Microchrysa Loew, 1855

Distribution. Bathurst Island, NT, new distribution (Fig. 2).

Remarks. Sargus gselli Hill, 1919 is congeneric with Cephalochrysa, sharing the following: head being much wider than high, ocelli forming an equilateral triangle and occiput without a posteriorly projecting fringe of hair-like setae. The general appearance of S. gselli is extremely similar to other species of Cephalochrysa known from Pacific islands, as well as the type species. Therefore, we transfer this species from its previous position in Sargus to become Cephalochrysa gselli (Hill, 1919) comb. nov., the first record of Cephalochrysa from Australia.

Catalogue of Australian species

Genus Cephalochrysa Kertész, 1912

gselli (Hill, 1919) comb. nov. NT.
Sargus gselli Hill, 1919: 459. HT ♀ [SAMA 29-003393; missing right wing; Fig. 3]: NT, Bathurst Island. The whereabouts of this specimen was previously unknown (Woodley, 2001: 224).

Genus Formosargus James, 1939

Fig. 4

Formosargus James, 1939: 35. Type species Formosargus kerteszi James, 1939 [DEI], by monotypy. See Woodley (2001: 190) for full list of synonymy.

Diagnosis. Small (length 5–7 mm), yellowish brown species, similar to Ptecticus, but distinguished by the: frons wide and almost parallel in females; face slightly anteroventrally produced to form a small beak-like protuberance that is visible in profile; scutum with a distinct black medial stripe; wings with vein M_1 and M_2 extremely weak and nearly unpigmented between cells br and bm; M_1 and M_3 very weakly developed; M_3 issued from discal cell (i.e. dM_{1+4} absent); alula reduced, almost linear; and lower calypter linear, without projecting process.

Remarks. Regarding the New Guinean fauna, Chrysochlora lineata de Meijere, 1913, is congeneric with Formosargus, sharing the characters noted above in the diagnosis. Therefore, we propose moving the species into the latter genus, to become Formosargus lineata (de Meijere, 1913) new combination.

Distribution. Northern Queensland, new distribution record (Fig. 2).

Formosargus melanogrammus
Lessard & Woodley, sp. nov.

http://zoobank.org/NomenclaturalActs/05CA4A84-8D02-4618-AF2C-2CE8CE515DD5

Diagnosis. A small (length 5–7 mm), pale yellowish brown species, with frons wide, parallel-sided, upper half black and lower half pale yellowish cream in the females, and thorax with a distinct dark brownish black medial stripe. It can be distinguished from Formosargus kerteszi James, 1939, by the wings with R_{2+3} arising directly in line with crossvein r-m (distinctly proximal in $F. kerteszi$), antennal flagellum with a more rounded apical margin of the basal complex and larger fourth flagellomere, scutum and scutellum with a relatively weakly defined black medial stripe (sharply delineated in $F. kerteszi$), and entirely yellowish pleura (a black spot is present on the anepisternum near the notopleural suture in $F. kerteszi$). Formosargus melanogrammus is extremely similar to $F. lineata$, differing mainly by having the scutal vitta widened posteriorly and occupying more than one-third of the width of the scutellum (narrower and more sharply defined in $F. lineata$, occupying one-fourth or less of the width of the scutellum). Regarding the Australian sargines, it could possibly be confused with $Psecticus$, but can be readily distinguished by the generic characters.

Description. Male. Unknown.

Female. Length 5–7 mm. Head. Rectangular in dorsal view, about 0.4 times as long as wide. Eyes dichoptic, ommatidia uniform in size. Frons wide (index 1.4–1.5), margins parallel-sided, cuticular surface shining, upper half black, slightly raised medially with a linear pale yellowish marking, bare, with moderately long, dense, hair-like setae at lateral margins, lower half pale yellowish cream, cuticular surface relatively convex, bare; ocellar
Figure 4. *Formosargus melanogrammus* Lessard & Woodley, sp. nov. holotype ♀ (AMS K.478681): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral.

Tubercle black, ocelli in the form of an equilateral triangle, hair-like setae moderately long and dense, golden yellow. Occiput not visible in lateral view, occipital plate covered in moderately long, dense, golden yellow hair-like setae. Face with cuticular surface shining, with some sparse, moderately long, hair-like setae at lower margins, oral margin with dense, relatively short, golden yellow hair-like setae. Antennae long, scape + pedicel + flagellum about 1.6 times as long as head, pedicel about 0.4 times as long as scape at outer surface, apically expanded and evenly rounded on inner surface, both segments pale yellow, with short, golden brown hair-like setae; flagellum about 1.8 times as long as scape + pedicel, basal complex yellow, apical margin covered with short, relatively dense, yellowish hair-like setae, apical flagellomere long, about 3 times as long as scape + pedicel.

Palpi yellow, with tomentum. Proboscis yellowish, with moderately long, dense, yellowish hair-like setae.

Thorax. Scutum pale yellowish brown, with a distinct dark brownish black medial line, hair-like setae moderately long, dense, erect, golden yellow, becoming darker brown dorsomedially; scutellum in same plane as scutum, dark brownish black on more than medial third, pale yellowish brown at lateral margins, hair-like setae moderately long, brown, more yellowish at margins; mediotorite same colour as scutum, with relatively long, erect, golden hair-like setae; pleura pale yellow, shining, hair-like setae relatively long, sparse, golden yellow. Legs pale yellow with yellowish hair-like setae. Wings hyaline; discal cell elongate, about 1.5 times as long as wide; all four medial veins issued from...
discl cell, terminating just before margin; CuA curved; alula about 6 times as long as wide, surface bare of microtrichia, marginal hair-like setae about equal to width of alula; posttегula with small dorsal tuft of dense, orangey yellow hair-like setae.

Abdomen. Elongate ovoid, about 1.2 times as long as wide, widest at tergite 4, yellowish brown, with darker brown infuscation becoming more prominent from tergites 3 onwards, hair-like setae relative long, dense, appressed golden yellow, becoming longer and more erect at lateral margins. Sternites pale yellowish brown, hair-like setae relatively long, appressed, golden yellow. Terminalia cuticular surface and hair-like setae yellowish brown, cerci with both segments about equal in length, second segment parallel-sided and tapering apically.

Distribution. Known only from the type locality of Kutini-Payamu (Iron Range) NP, northern Qld (Fig. 2).

Etymology. This specific name is derived from the Greek, *melan*, black, and *gramme*, line, referring to the distinctive black medial stripe on the scutum.

Remarks. The face is slightly anteroventrally produced to form a beak-like protuberance, similar to *Hermetia* Lateille, 1804, but not as distinct. This species is very similar to *F. lineata* (New Guinea), differing mainly in the form of the thoracic vitta. Unfortunately, the wings in the holotype female of *F. lineata* are mostly destroyed, so comparisons of wing characters cannot be made. Also, only females are known for both species so male terminalia characters are also unavailable.

One additional specimen from the Mt Lamond track (♀, “beginning of Mt Lamond track / Iron Range Nat. Park, Qld / 12°43′34″S 143°17′06″E / 3 Jan 1996 20 m / G. and A. Daniels” AMS K.478680) most likely represents an undescribed specimen as it is larger in size (length 7 mm), and has an incomplete thoracic vitta that is mostly absent anterior to the transverse suture, and abdomen with more defined, almost black markings predominantly on tergites 2 and 3.

Genus Microchrysa Loew, 1855

Figs 5, 6

Microchrysa Loew, 1855: 146. Type species *Musca polita* Linnaeus, 1758, by original designation. See Woodley (2001: 202) for full synonymy.

Diagnosis. Small (length 5.0–5.5 mm), partially metallic, sexually dimorphic species, usually with the females having a dark, metallic, concolored thorax and abdomen, and the males having a pale yellowish abdomen, contrasting with the darker metallic thorax. Most similar to *Cephalochrysa*, but distinguished by the: smaller size; head more rounded in anterior view, about 0.75 times as high as wide; lower frons without distinct triangular callus; and wings with cell \(r_1 \) stained yellow and all four medial veins faint.

Remarks. Only two species are recorded from the Australian-Oceanian Region: *M. bipars* (Walker, 1861) [holotype in BMNH, destroyed], from Indonesia (Maluku), and *M. flaviventris* (Wiedemann, 1824) [syntype in UZMC], from Belau, Guam, Indonesia (Papua), Micronesia, New Caledonia, Northern Marianas, Papua New Guinea, Solomon Islands, Vanuatu, and widespread in the eastern Palearctic and Oriental regions, and recently introduced into the United States of America (Woodley, 2001, 2009).

Distribution. Ranging from far northern Qld to the central coast of NSW, and northern NT (including Rimbija Island), new distribution record. See Remarks section of *Microchrysa wrightae* Lessard & Woodley, sp. nov.

Microchrysa wrightae Lessard & Woodley, sp. nov.
http://zoobank.org/NomenclaturalActs/C03A3DE4-14D6-4E3E-8920-4866B5B1939C

Figs 5, 6

Holotype ♂, “Ingham, Qld. / Light Trap / 15 Mar. 1961 / K.I. Harley”; “HOLOTYPE ♂ / Microchrysa wrightae / Lessard & Woodley, 2020” ANIC 29-037422. The specimen is in excellent condition.

Diagnosis. A small (length 5.0–5.5 mm) species, with metallic golden or purplish green thorax, pale yellow legs with a dark brown marking on the apical half of the hind tibiae, and antennae and palpi yellow in males, darker brown in females. This species can be distinguished from *M. flaviventris* by the abdomen without green colouration in males (tergite 5 with green colouration in *M. flaviventris*), and both sexes...
Figure 5. Microchrysa wrightae Lessard & Woodley, sp. nov. holotype ♂ (ANIC 29-037422): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral; paratype ♂ (ANIC 29-037462): (e) genital capsule and phallic complex, dorsal; (f) genital capsule and phallic complex, ventral, and; (g) epandrium, proctiger and cerci, dorsal. Abbreviations: c, cercus; ep, epandrium; gc, gonocoxite; gs, gonostylus; pr, proctiger.
Figure 6. *Microchrysa wrightae* Lessard & Woodley, sp. nov. paratype ♀ (ANIC 29-037423): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral.

with anterior portion of discal cell between *r*-m and *M*, well developed and distinctly visible (faint in *M. flaviventris*; Woodley 2009), and hind femora entirely yellow (marked with dark brown apically in *M. flaviventris*), and the male terminalia with the posterior margin of the synsternite with a bilobed process with the lobes narrowly separated (deeply emarginate in *M. flaviventris*; Nagatomi 1975: fig. 4B).

Description. *Male.* Length 5.0–5.5 mm. **Head.** Eyes holoptic, contiguous about one-third the length of frons from vertex, with distinct demarcation of change in size of ommatidia just above antennae. Upper frons blackish, bare, lower frons diverging ventrally at margins, with a distinct linear impression, cuticular surface subshining, upper half pale brown, lower half black, hair-like setae relatively short, dense, golden; ocellar tubercle relatively bulging at each ocellus, ocelli almost in the shape of an equilateral triangle, slightly elongated anteriorly, black with reflections of green, hair-like setae relatively short, yellowish. Occiput not visible in lateral view, occipital plate relatively bare, with short, yellowish hair-like setae limited to lateral margins. Face wide, narrowly visible in profile, shining metallic green and gold, hair-like setae relatively short, dense, golden yellow. Antennae relatively s, scape+pedicel+flagellum about equal to length of head, scape about equal to length of pedicel, pedicel slightly expanded and curved gently apically on inner surface, both segments pale yellow, flagellum basal complex yellow, with small, irregular, circular presumably sensory pits, apical margin with short, golden hair-like setae, apical flagellomere yellowish brown, about 1.7 times as
long as scape+pedicel. Palpi very short, yellow, with short, yellowish hair-like setae. Proboscis yellowish, with short, yellowish hair-like setae.

Thorax. Scutum shining metallic golden green, occasionally with purplish reflections, with relatively short, dense, appressed, golden hair-like setae; scutellum slightly raised relative to scutum, same colour as scutum, with relatively short, dense, golden hair-like setae; mediotergite same colour as scutum, with a few moderately long, golden hair-like setae; pleura brownish with reflections of green to gold, with a prominent, narrow, whitish horizontal strip encompassing postpronotal lobe and upper margin of anepisternum, hair-like setae pale yellow to whitish. Legs with pale yellow coxae, femora, tibiae and tarsi, brown on apical half of hind tibiae, hair-like setae pale yellowish on all segments. Wings hyaline; cell r_1 stained entirely pale yellow; R_{2+3} arising distal to r-m, exceeding length of discal cell; discal cell small, slightly elongate, about 1.3 times as long as wide; all medial veins terminating before reaching margin, M_1 and M_2 the weakest, both occasionally reduced to appendices or appearing as absent, M_3 issued separately from discal cell by dM_{1+2}; CuA relatively straight, curving at extreme end toward margin, petiole vein $CuA+CuP$ short; alula large, slightly expanded and relatively pointed apically, surface without microtrichia; post-tegula yellowish, with yellowish hair-like setae; lower calypter with small strap-like lobe present, hair-like setae dense, relatively long, pale yellow.

Abdomen. Ovoid, about 1.2–1.4 times as long as wide, tergites 2–5 relatively quadrate, widest at tergite 5, cuticular surface pale yellow, contrasting with golden green thorax, hair-like setae short, dense, appressed, brown, becoming more yellow and erect at lateral margins, most obvious on tergites 2, 3 and apical margins of tergite 6. Sternites pale yellow, hair-like setae short, dense, appressed and entirely golden yellow. Terminalia yellowish brown; gonostyli semi-triangular, relatively acute pointed posterolaterally, with a depressed groove at centre, hair-like setae relatively long, dense, brownish; gonocoxites nearly quadrate, evenly tapered anteriorly, posterior margin of genital capsule emarginate with a pair of rounded sublateral processes separated by a deep, quite narrow emargination, gonocoxal apodemes relatively short, not reaching anterior margin, anteriorly pointed; epandrium relatively short, anterior margins blunt, rounded laterally, proctiger wider than long, semi-triangular, cerci longer than wide, rounded at tip, exceeding length of proctiger, hair-like setae long, dense, brownish.

Female. Length 5.0–5.5 mm. Similar to males, but slightly more bluish purple in colouration on the thorax and the abdomen, abdomen is concolorous with the scutum. Eyes with ommatidia of uniform size, with extremely sparse, short, whitish hair-like setae. Frons wide (index 1.4–1.5), with a strong medial impression, margins converging ventrally, shining metallic purplish to aqua blue, with relatively sparse, short, dull yellowish white setae, lower frons with a pale yellowish brown horizontal band. Occiput well developed, shining metallic purplish to aqua blue, dorsal half visible in lateral view. Antennae darker yellowish brown. Palpi dark brown. Abdomen with tergites blackish with strong reflections of green to purplish blue, concolorous with thorax, lateral hair-like setae whitish; sternites dark brown to black, with subtle bluish reflections, hair-like setae whitish.

Distribution. Northern Qld (Fig. 2).

Etymology. This specific name is in honour of Susan Wright, Collection Manager of Entomology, QM, for assistance and access to the collection.

Remarks. At least four undescribed species of *Microchrysa* are known in collections from: (a) Pine Creek and Curtain Fig, Qld [ANIC 29-059290 to 29-059301]; (b) Townsville to Brisbane, Qld [7♂♂ ANIC 29-059289, 29-059290, 29-059291, 29-059292, 29-059293, 29-059295, 29-059299; 3♀♀ ANIC 29-059291, 29-059295, 29-059294; 1♀ USNM K.453226, 3♀♀ AMS K.453230–K.453232; 1♀ USNM; 2♂♂ QM] and Carnarvon Golf Club, NSW [♀♀ AMS K.478683–K.478691]; (c) Davies Creek, Qld, [N.E. Woodley Collection donated to USNM]; and (d) Kutini-Payamu (Iron Range) National Park [AMS K.453227, K.453225]. Material is also known from Berry Springs, Larrakeyah, Casuarina Point, Black Point, and Rimbija Islands, NT, that superficially resemble *M. wrightiae*.

Although little is known regarding the biology of the Australian sargine fauna, this genus appears to be associated with vegetation, based on collection labels of specimens belonging to three undescribed species: two specimens from Brisbane (AMS K.453231, K.453232) were collected from leaves of *Physallis peruviana* (Solanaceae); a series of females from Carnarvon Golf Club, NSW (AMS K.478683–K.478691) were collected from a woodchip pile, and; a female from Snake Bay (presumably NT; ANIC 29-059096) and male from Melville Island (NT, ANIC 29-059101) were collected from the native shrub *Opilia amentacea* (Opiliaceae).

Genus Ptecticus Loew, 1855

Figs 7–10

Diagnosis. Medium to large (length 8–16 mm), slender, yellow to orange brown flies, similar to *Sargus*, but distinguished by the: antennal scape strongly, more or less triangularly produced into flagellar complex on inner side (e.g., Fig. 10d); wings with R_{2+3} arising proximal to r-m; lower calypter without strap-like lobe; and usually not strongly metallic in colouration (only one species, *Ptecticus longipes* (Walker, 1861), new record, is semi-metallic: Figs 7, 8). Regarding the Australian fauna, the genus is most similar to *Formosargus*, but can be distinguished by the: upper frons converging ventrally in females; face evenly rounded in profile view; wings with M_1 and M_2 separated from discal cell at least slightly; and alula large and apically expanded.

Distribution. Northern Queensland (Fig. 2).

Here we present the first Australian records for *P. longipes* (previously recorded from Indonesia, New Guinea, Solomon Islands) from a series of specimens collected from King Park, Kutini-Payamu (Iron Range) NP, Qld (males and females AMS K.453305–K.453309). This is the only Australian species exhibiting semi-metallic colouration, having a deep milky blue thorax and abdomen. It is likely to be confused with *Sargus*, but can be readily distinguished based on the generic characters.

Little is known regarding the biology of the Australian species, however, Woodley (2001) noted that some species were associated with fallen fruits in the forests of Panama, and decaying piles of grass and compost heaps in the United States of America.

Catalogue of Australian species

Genus Ptecticus Loew, 1855

Sargus complens Walker, 1858: 81. HT ♂ (stated ♀) [BMNH]: Indonesia: Maluku, Kepulauan Aru.

Sargus rufescens Wulp, 1869: 104. LT ♀
Sargus rubescens.—Bigot, 1891: 280. Incorrect subsequent spelling.
Ptecicus repensans ssp. anneliesae Lindner, 1935:
Ptecicus repensans ssp. monticola Lindner, 1935:

Sargus longipes (Walker, 1861a) new distribution. Australasian: Australia (Qld), Indonesia (Irian Jaya, Maluku), Papua New Guinea (Papua New Guinea).
Figure 9. *Ptecticus queenslandicus* Daniels, 1979 holotype ♂ (= *rogans* Walker, 1858: syn. Rozkošný & de Jong 2003) (AMS K.70681): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral.

Ptecticus albitarsis de Meijere, 1913: 319. HT ♂ [NHNL(ZMAN)]: Indonesia: Irian Jaya, Alkmaar.

Ptecticus albitarsus.—Daniels, 1979: 574. Incorrect subsequent spelling.

Key to Australian species

A recent key to the Australasian species was presented in Rozkošný & de Jong (2003: 257).
Sargus Fabricius, 1798

Figs 11–15

Diagnosis. Small to medium sized (length 6–12 mm), slender, elongate species, with strong metallic colouration and occiput with a prominent fringe of posteriorly directed hair-like setae. Similar to *Ptecticus*, but distinguished by the: anterior ocellus farther from posterior ocelli than they are from each other, forming an elongated triangle; wings with vein R_{2+3} arising distal to $r-m$; lower calypter with strap-like lobe present; and strong metallic colouration.

Distribution. Far northern Qld to central coast of NSW (Fig. 2).

Remarks. With the transfer of *C. gselli* from *Sargus* to *Cephalochrysa*, there are now three recognized species of *Sargus* from Australia. According to White (1916), *Sargus* was previously unrecorded from Australia at the time, with *Sargus meridionalis* White, 1916 being the first species recognized from the continent. This was reinforced by Hill (1919: 460) in his description of *S. gselli* (= *C. gselli*), stating that *Sargus* “has been known in Australia by only one described species, *S. meridionalis* White. There are
one or two additional species… from North Queensland (Kuranda)”. Hardy (1932) later described the second species in the genus from Australia, *Sargus darius* Hardy, 1932, including a paratype from Kuranda, which is presumably the additional species referred to by Hill.

It is possible that species names applied to the Australian fauna are erroneous, such as *Sargus mactans* Walker, 1859 (originally described from Indonesia), which has been used for specimens from Queensland. In a review of the Oriental Stratimomyiidae, Brunetti (1923: 157) identified specimens of *S. mactans* deposited in the BMNH from “North Queensland”. This Australian record was adopted by some workers (Hauser & Rozkošný, 1999: 13; Woodley, 2001: 226), however, *S. mactans* was not acknowledged by Hardy (1932) and the name has not been applied to material deposited in most Australian collections. Moreover, it seems unlikely that the southeast Asian fauna have travelled east of the Wallace Line. The identify of *S. mactans* from Australia has been made further complicated by the damaged type specimen from the BMNH (head and left with missing; Fig. 11), in addition to the lack of available key to species and authoritatively identified collection specimens. Therefore, we tentatively retain *S. mactans* as part of the Australian fauna until a much needed species-level revision can be completed for *Sargus* from the Oriental and Australian regions.

Biology. According to James (1960), adults from the Nearctic are commonly found flying near or resting on leaves in sunlight, and visiting flowers such as *Sedum* (stonecrop, Crassulaceae), *Isocoma vernonoides* (goldenbush, Asteraceae), and *Sambucus coetulea* (elderberry, Adoxaceae),

Figure 11. *Sargus mactans* Walker, 1859 holotype ♂ (BMNH: NHMUK010922300): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral.
whereas the larvae breed in decaying vegetation, including leaves, turnip roots, and/or mammal excrement. Regarding the Australian species, *S. meridionalis* seems to decompose organic waste since it has been bred from human faeces [ANIC 29-037454, 29-037455].

Catalogue of Australian species

Genus Sargus Fabricius, 1798

darius Hardy, 1932. Qld.
Sargus darius Hardy, 1932: 47. HT ♀ [location of type unknown]: Qld, Great Palm Island [PT ♀, QM T246603; Fig. 15].

Sargus mactans Walker, 1859: 97. HT ♂ (stated ♀) [BMNH; damaged, head and left with missing; Fig. 11]: Indonesia: Sulawesi, Ujung Pandang.

meridionalis White, 1916. NSW.
Sargus meridionalis White, 1916: 95. HT ♂ [BMNH; Figs 12–14]: NSW, Milson Island.
Figure 13. *Sargus meridionalis* White, 1916 non-type ♂ (ANIC 29-037454): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral.

Acknowledgments. Authors would like to thank: Thelka Pleines (ANIC) for databasing specimens of *Microschysa wrightae*; Xuankun Li (ANIC) for imaging type specimens of *Sargus mactans* and *S. meridionalis* from the BMNH, and assistance with imaging the genitalia; Bronte Sinclair (ANIC) for imaging the paratype of *S. darius*; Thomas Pape and Anders Alexander Illum (UZMC) for imaging the type specimen of *M. flaviventris*; Neal Evenhuis and James Boone (BPBM) for imaging authoritatively identified specimens of *Ptecticus longipes*; Martin Hauser (California Department of Food and Agriculture) for sharing images of the holotype of *Formosargus lineata*; Erica McAulster (BMNH), Russell Cox and Derek Smith (AMS), Christine Lambkin and Susan Wright (Queensland Museum), Justin Bartlett and Desley Tree (Queensland Department of Agriculture and Fisheries), Peter Hudson (SAMA), Ken Walker (National Museum of Victoria), Cathy Byrne and Simon Grove (Tasmanian Museum and Art Gallery) for providing access and/or loaning of material. This paper is a product of the Australian Biological Resources Study (ABRS) National Taxonomy Research Grant Program project “A phylogeny, systematic revision and key to the genera of Australian Soldier Flies (Diptera: Stratiomyidae)” (RF214-30) and the Australian American Fulbright Commission Specialist Grant “Training the next generation of Australian entomologist through research, fieldwork and scientific writing”.

References

https://doi.org/10.5962/bhl.title.9296
Figure 14. *Sargus* meridionalis White, 1916 non-type ♀ (ANIC 29-037455): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral.
Figure 15. *Sargus darius* Hardy, 1932 paratype ♀ (QM T246603): (a) dorsum; (b) lateral; (c) head, frontal; (d) head, anterolateral.

https://doi.org/10.1111/j.1096-3642.1912.tb0091.x

