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Development and evaluation of an artificial
intelligence system for COVID-19 diagnosis
Cheng Jin1,4, Weixiang Chen1,4, Yukun Cao 2,3,4, Zhanwei Xu1, Zimeng Tan1, Xin Zhang2,3, Lei Deng1,

Chuansheng Zheng 2,3, Jie Zhou1, Heshui Shi 2,3✉ & Jianjiang Feng 1✉

Early detection of COVID-19 based on chest CT enables timely treatment of patients and

helps control the spread of the disease. We proposed an artificial intelligence (AI) system for

rapid COVID-19 detection and performed extensive statistical analysis of CTs of COVID-19

based on the AI system. We developed and evaluated our system on a large dataset with

more than 10 thousand CT volumes from COVID-19, influenza-A/B, non-viral community

acquired pneumonia (CAP) and non-pneumonia subjects. In such a difficult multi-class

diagnosis task, our deep convolutional neural network-based system is able to achieve an

area under the receiver operating characteristic curve (AUC) of 97.81% for multi-way

classification on test cohort of 3,199 scans, AUC of 92.99% and 93.25% on two publicly

available datasets, CC-CCII and MosMedData respectively. In a reader study involving five

radiologists, the AI system outperforms all of radiologists in more challenging tasks at a

speed of two orders of magnitude above them. Diagnosis performance of chest x-ray (CXR)

is compared to that of CT. Detailed interpretation of deep network is also performed to relate

system outputs with CT presentations. The code is available at https://github.com/

ChenWWWeixiang/diagnosis_covid19.

https://doi.org/10.1038/s41467-020-18685-1 OPEN

1 Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China. 2 Department of
Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. 3 Hubei Province Key Laboratory of
Molecular Imaging, Wuhan, China. 4These authors contributed equally: Cheng Jin, Weixiang Chen, Yukun Cao. ✉email: heshuishi@hust.edu.cn;
jfeng@tsinghua.edu.cn

NATURE COMMUNICATIONS |         (2020) 11:5088 | https://doi.org/10.1038/s41467-020-18685-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18685-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18685-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18685-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18685-1&domain=pdf
http://orcid.org/0000-0002-8391-841X
http://orcid.org/0000-0002-8391-841X
http://orcid.org/0000-0002-8391-841X
http://orcid.org/0000-0002-8391-841X
http://orcid.org/0000-0002-8391-841X
http://orcid.org/0000-0002-2435-1417
http://orcid.org/0000-0002-2435-1417
http://orcid.org/0000-0002-2435-1417
http://orcid.org/0000-0002-2435-1417
http://orcid.org/0000-0002-2435-1417
http://orcid.org/0000-0002-0877-3054
http://orcid.org/0000-0002-0877-3054
http://orcid.org/0000-0002-0877-3054
http://orcid.org/0000-0002-0877-3054
http://orcid.org/0000-0002-0877-3054
http://orcid.org/0000-0002-5940-0063
http://orcid.org/0000-0002-5940-0063
http://orcid.org/0000-0002-5940-0063
http://orcid.org/0000-0002-5940-0063
http://orcid.org/0000-0002-5940-0063
https://github.com/ChenWWWeixiang/diagnosis_covid19
https://github.com/ChenWWWeixiang/diagnosis_covid19
mailto:heshuishi@hust.edu.cn
mailto:jfeng@tsinghua.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The SARS-CoV-2 (ref. 1) has infected >16 million people
worldwide, killed >644 thousands (as of the time this
article was written) and is still spreading rapidly world-

wide. It is important to detect COVID-19 as quickly and accu-
rately as possible for controlling the spread of the disease and
treating patients. Even though reverse transcription-polymerase
chain reaction (RT-PCR) is still ground truth of COVID-19
diagnosis, the sensitivity of RT-PCR is not high enough for low
viral load present in test specimens or laboratory error2. In
addition, the supply of kits of RT-PCR varies from place to place
and some developing countries are in short supply of it3.

As a result, some countries used chest imaging, such as chest
CT or chest x-ray (CXR) as a first-line investigation and patient
management tools4,5. Chest imaging, especially CT, can show
early lesions in the lung and, if diagnosed by experienced radi-
ologists, can achieve high sensitivity. In addition, chest imaging
technologies, especially CXR, are widely available and economic.
At present, the diagnosis of chest CT depends on visual diagnosis
of radiologists, which has some problems. Firstly, chest CT
contains hundreds of slices, which takes a long time to diagnose.
Secondly, COVID-19, as a new lung disease, has similar mani-
festations with various types of pneumonia6. Radiologists need to
accumulate a lot of CT diagnostic experience to achieve a high
diagnostic performance, especially in differentiating similar
deceases. COVID-19 can still be a threat for a long time, since the
situations in some countries are not optimistic. If COVID-19 and
influenza were to break out together, which is possible, CT
diagnosis workload would likely be far beyond the number of
qualified radiologists.

Artificial intelligence (AI) may be the unique preparation to take
up this challenge. Powered by large labeled datasets7 and modern
GPUs, AI, especially deep learning technique8, has achieved excel-
lent performance in several computer vision tasks, such as image
classification9 and object detection10. Recent research shows that AI
algorithms can even achieve or exceed the performance of human
experts in certain medical image diagnosis tasks, including lung
diseases11–17. Comparing to other lung diseases, such as lung
nodule detection18–20, tuberculosis diagnosis16,21, and lung cancer
screening15, differentiating COVID-19 from other pneumonias has
unique difficulty, i.e., high similarity of pneumonias of different
types (especially in early stage) and large variations in different
stages of the same type. Hence, developing AI diagnosis algorithm
specific to COVID-19 is necessary. The AI diagnosis algorithm also
has the advantages of high efficiency, high repeatability, and easy
large-scale deployment.

There are already some published studies on CT-based
COVID-19 diagnosis systems22,23. Here, we briefly review sev-
eral representative studies employing relatively large datasets.
Zhang et al.24 developed COVID-19 diagnosis system on a
database consisting 4154 patients, and it can differentiate
COVID-19 from other common pneumonias and normal healthy
with AUC of 0.9797. In their system, the classification was based
on lesion segmentation result, and the lesion segmentation DICE
index was ~0.662, which is not an accurate representation of
lesions. Another drawback is manual annotation of training
segmentation masks is a very expensive procedure. Li et al.25

developed an AI system and yielded AUC of 0.96 for COVID-19
detection on dataset consisting of 3322 subjects, including
COVID-19, CAP, and healthy people. Their system extracted
features on slices and fused them into volume level, which
increased much memory demand, while without extracting more
informative 3D features. Several slice-level diagnosis meth-
ods17,26,27 were proposed which were quite similar to Li et al.’s
work. Some AI systems employed 3D convolution neural net-
works, but only considered the relatively simple two-category
classification28,29. There are also a few COVID-19 detection

systems using CXR30, but the number of subjects with COVID-19
in these studies is much smaller than that in the studies using CT,
and no study has quantitively compared performances of CXR
and CT using paired data.

In this work, we construct a clinically representative large-scale
dataset with 11,356 CT scans from three centers in China and
four publicly available databases, which is much larger than
previous studies. To understand relative performances of CT and
CXR for detecting COVID-19, we develop both CT-based and
CXR-based diagnosis systems, and test them using paired data,
which has not been studied before. We compare the diagnostic
performance of our CT-based diagnosis system with that of five
radiologists in reader studies, and the results show that the per-
formance of this system is higher than that of experienced radi-
ologists. In addition, based on prediction score on every slice of
CT volume, we locate the lesion areas in COVID-19 patients and
perform a statistical study of different subsets of patients. The
specific phenotypic basis of the diagnosis output is also traced by
an interpretation network, and radiomics analysis is applied to
understand the imaging characteristics of COVID-19.

Results
Datasets for system development and evaluation. We developed
and evaluated a deep learning-based COVID-19 diagnosis system,
using multi-class multicenter data, which included 11,356 CT
scans from 9025 subjects consisting of COVID-19, CAP, influ-
enza, and non-pneumonia. CAP subjects included in our database
were all nonviral CAP. Data were collected in three different
centers in Wuhan, and from four publicly available databases,
LIDC–IDRI31, Tianchi-Alibaba32, MosMedData33, and CC-
CCII24 (described in Table 1 and “Methods”).

As multistage CT scans of the same person might be similar,
the cohort division was performed on subjects with no over-
lapping subjects in different sub-cohorts. Except MosMedData
and CC-CCII, all remaining data were divided into two
independent parts, a training cohort of 2688 subjects and a test
cohort of 2688 subjects. Three reader study cohorts were
randomly chosen from test cohort with respectively 100, 100,
and 50 subjects for three tasks, differentiating pneumonia from
healthy, differentiating COVID-19 from CAP, and differentiating
COVID-19 from influenza. CC-CCII and MosMedData database
were used as independent test cohorts containing respectively
2539 subjects and 1110 subjects (described in “Methods”).

Construction of the AI system for COVID-19 diagnosis. We
proposed a deep learning-based AI system for COVID-19 diag-
nosis, which directly takes CT data as input, to perform lung
segmentation, COVID-19 diagnosis, and COVID-infectious slices
locating. In addition, we hope that the diagnosis results of AI
system can be quantitatively explained in the original image to
alleviate the drawback of deep neural networks as a black box.
The system consists of five key parts (Fig. 1a), (1) lung segmen-
tation network, (2) slice diagnosis network, (3) COVID-infectious
slice locating network, (4) visualization module for interpreting
the attentional region of deep networks, and (5) image phenotype
analysis module for explaining the features of the attentional
region.

The workflow of deep learning-based diagnosis model is shown
in Fig. 1b. CT volumes were divided into different cohorts. Then
after slice-level training, our model can accurately classify input
slices into four categories, including non-pneumonia, CAP,
influenza-A or B, and COVID-19. Subsequently, a task-specific
fusion module was utilized to fuse slice results into case-level
diagnosis according to different diagnosis tasks such that the
network can be used in different tasks without retraining. The
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Table 1 Characteristics of patients from our datasets.

a

# Subject (# Scan) Non-pneumonia CAP Influenza-A/B COVID-19 In total

Training cohort 1230 (1233) 666 (666) 41 (70) 751 (1294) 2688 (3263)
Test cohort 1229 (1234) 666 (668) 42 (62) 751 (1235) 2688 (3199)
CC-CCII test cohort 829 (1079) 964 (1528) 0 726 (1257) 2539 (3784)
MosMedData test cohort 254 (254) 0 0 856 (856) 1110 (1110)
In total 3562 (3818) 2296 (2862) 83 (132) 3084 (4542) 9025 (11356)

b

# Subject Non-pneumonia CAP Influenza-A/B COVID-19

Training cohort Test cohort Training cohort Test cohort Training cohort Test cohort Training cohort Test cohort

Gender
Male 25 34 404 424 27 27 348 369
Female 104 95 262 244 14 15 403 382

Age
≤20 0 1 62 69 2 0 1 3
21–40 122 118 116 98 5 7 139 116
41–60 6 10 193 198 7 8 268 261
61–80 1 0 241 243 19 20 314 335
>80 0 0 45 50 8 7 29 36

No record
0 0 9 10 0 0 0 0

# Stage
1 129 129 666 664 28 27 323 341
2 0 0 0 4 7 11 300 301
3 0 0 0 0 1 1 103 87
>3 0 0 0 0 5 3 25 22

a Number of subjects and scans of each class. b Detailed characteristics of subjects of training and test cohort from Wuhan. Note: as clinical characteristics of publicly available databases are not
available due to anonymization, Table b lists only the data from Wuhan.

Test cohort

Interpreting AI system

Reader study

Independent
evaluation 

Five radiologists from the outbreak center

AI system

Training cohort

Multi-center cohorts from epidemic 
area and two publicly available 

databases, including COVID-19, CAP,
Influenza-A/B and non-pneumonia

Reader study cohorts

AI system

Subset analysis

COVID-19 diagnosis

AI system

Training

Cohort from CC-CCII database, 
including COVID-19, Common 

pneumonia and normal

Fine-tune 
and 

validation

Randomly 
selected

Fig. 1 Workflows of the whole study and AI system. a Workflow of the whole study. b Construction and usage of the AI system.
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a ROC of AI diagnosis on test cohort b ROC of AI diagnosis on CC-CCII cohort
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Fig. 2 Receiver operating curves of the AI system. a ROC curves of AI system on test cohort. b ROC curves of AI system on CC-CCII test cohort. c ROC
curve of AI system on MosMedData test cohort. d ROC curves of CT-based AI system and CXR-based AI system on sub-cohort of test cohort, which has
paired CT and CXR data. e ROC curve of AI system on COVID-infectious locating. f ROC curve together with reader performances on CAP-or-COVID
cohort. g ROC curve together with reader performances on influenza-or-COVID cohort. h ROC curve together with reader performances on pneumonia-or-
non-pneumonia cohort.
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model was implemented in two-dimensional (2D) not only
because it is easier to train within memory limit of common
GPUs (usually 11 G), but also because slice-level diagnosis can be
used for COVID-infectious slice locating. Other modules of our
system are described in Supplementary Methods.

Performances of diagnosis. The trained AI system was evaluated
on the test cohort. We used the receiver operating characteristic
(ROC) curves to evaluate the diagnostic accuracy. On the test
cohort, the ROC curve (Fig. 2a) showed AUC of four categories
were respectively 0.9752 (for non-pneumonia), 0.9804 (for CAP),
0.9885 (for influenza), and 0.9745 (for COVID-19). Besides,
sensitivity and specificity for COVID-19 were 0.8703 and 0.9660,
and the multi-way AUC was 0.9781 (Table 2a). Our system
showed good generalization ability with 0.9299 multi-way AUC
on publicly available database CC-CCII (Fig. 2b and Table 2b),
and 0.9325 AUC on MosMedData (Fig. 2c and Table 2c). The
confusion matrix of four categories and PR curves of diagnosis of
COVID-19 are shown in Fig. 3a–c, g. The decision curve analysis
(DCA) for the AI system are presented in Fig. 3d–f, which
indicated that the AI system added benefit when the threshold
was within wide ranges of 0.03–0.87, 0.04–0.90, and
0.20–1.00 separately for COVID-19 diagnosis with negatives from
non-pneumonia, CAP, and influenza. Lung segmentations were
used as soft masks of images before images were fed into classi-
fication network, and the Dice index of our segmentation network
was 92.55% (Table 2f).

COVID-infectious slice locating results are shown in Fig. 2d
and Table 2g. Although with the same network structure as the
slice diagnosis network, our experiments showed training
COVID-infectious slice locating network, using normal and
abnormal slices from COVID-19 subjects led to a much better

performance, with AUC of 0.9559, specificity of 0.9636, and
sensitivity of 0.8009.

Comparison of AI system to radiologists. We conducted a
reader study with five board-certified radiologists (average of 8-
year clinical experience, range 5–11 years, Table 3a). All read-
ers were asked to read independently without any information
regarding whether the patient has been diagnosed with
COVID-19.

Unlike Zhang et al.24, we picked three different cohorts with
different tasks for the reader study. The three cohorts with
differential tasks were pneumonia vs. non-pneumonia, CAP vs.
COVID-19, and influenza vs. COVID-19 (details described in
“Methods”). The separate tasks helped us to analyze the COVID-
19 distinguishing ability with different negative classes. Com-
pared with human radiologists, the ROC curves in Fig. 2f–h and
detailed metrics in Table 2e demonstrate that the AI system
performed better than each radiologist at distinguishing CAP vs.
COVID and influenza vs. COVID. This superior performance of
the AI system can also be appreciated on a numerical level by the
number of patients diagnosed correctly vs. incorrectly between
the AI system and the radiologists (Table 3b, c). The AI system
was only slightly worse at distinguishing pneumonia from non-
pneumonia than radiologists.

Figure 4 shows some slices from error predictions of the AI
system and human readers. Human readers tend to use some
typical macro-level radiology features in diagnosis, so that the
error predictions of human had atypical or unclear presentation.
For example, the CT of COVID-19 in Fig. 4a has atypical density
decrease (blue arrow) so that all readers classified it as CAP; the
CT of influenza in Fig. 4b has multiple small patchy GGOs
distributed around pleural and bronchial without pleural effusion,

Table 2 Metrics of the AI system.

Task AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

a
Non-pneumonia diagnosis 0.9752 (0.9726–0.9783) 0.9343 (0.9290–0.9429) 0.9801 (0.9778–0.9827)
CAP diagnosis 0.9804 (0.9776–0.9837) 0.9687 (0.9634–0.9741) 0.9407 (0.9366–0.9448)
Influenza-A/B diagnosis 0.9885 (0.9861–0.9928) 0.8307 (0.7962–0.8696) 0.9945 (0.9936–0.9960)
COVID-19 diagnosis 0.9745 (0.9722–0.9771) 0.8703 (0.8620–0.8784) 0.9660 (0.9629–0.9693)
Multi-way metrics 0.9781 (0.9756–0.9804) 0.9151 (0.9115–0.9193) (the metric changed to accuracy)
b
Normal diagnosis 0.9541 (0.9511–0.9574) 0.8561 (0.8471–0.8661) 0.9524 (0.9494–0.9563)
Common pneumonia diagnosis 0.9098 (0.9058–0.9139) 0.8823 (0.8759–0.8904) 0.8685 (0.8628–0.8745)
COVID-19 diagnosis 0.9212 (0.9175–0.9255) 0.7799 (0.7706–0.7893) 0.9355 (0.9315–0.9397)
Multi-way metrics 0.9299 (0.927–0.933) 0.8435 (0.8391–0.8483) (the metric changed to accuracy)
c
COVID-19 diagnosis on
MosMedData cohort

0.9325 (0.9257–0.9382) 0.9446 (0.9379–0.9510) 0.6613 (0.6359–0.6855)

d
CT COVID-19 diagnosis 0.9847 (0.9822–0.9877) 0.9762 (0.9718–0.98110) 0.91250 (0.8975–0.9301)
CXR COVID-19 diagnosis 0.9527 (0.9474–0.9583) 0.9623 (0.9570–0.9673) 0.7155 (0.6918–0.7436)
Result-level fusion 0.9894 (0.9873–0.9917) 0.9469 (0.9399–0.9543) 0.9503 (0.9371–0.9627)
e
Pneumonia-or-non-
pneumonia cohort

0.9869 (0.9818–0.9993) 0.9404 (0.9210–0.9756) 1.0000 (1.0000–1.0000)

CAP-or-COVID-19 cohort 0.9727 (0.9637–0.9825) 0.9591 (0.9459–0.9767) 0.9199 (0.8947–0.9512)
Influenza-or-COVID-19 cohort 0.9585 (0.9413–0.9813) 0.94961 (0.93333–1.0) 0.8331 (0.7826–0.8846)
f
Lung segmentation 0.9255 (0.6018–0.9732) 0.9660 (0.7553–0.9918) 0.9956 (0.9787–0.9983)
g
COVID-infectious slices
locating

0.9559 (0.9532–0.9586) 0.8009 (0.79323–0.8094) 0.9636 (0.9607–0.9666)

a Metrics on test cohort. b Metrics on CC-CCII test cohort. c Metrics on MosMedData test cohort. d Metrics on comparation between CT and XCT on paired data of test cohort. e Metrics on three
reader study tasks. f Lung segmentation performances. g COVID-infectious slices locating.
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cohort. c Confusion matrix of the two diagnostic categories in MosMedData cohort. d–f DCA of the AI system in the test cohort for differential diagnosis of
COVID-19, non-pneumonia, CAP, and influenza-A/B. g PR curves employed to assess the AI system performance on COVID-19 diagnosis.
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so all readers classified it as COVID-19. Both of these two cases
were correctly diagnosed by AI. Figure 4c, d are two cases that AI
misclassified, probably because lesions are too small or too close
to lung margin.

Subset analysis. For an in-depth understanding of the AI system
and characteristics of different populations with COVID-19, we
evaluated the AI system on subsets of test cohort divided by
gender, age, and stage and show them in Fig. 5a. The stage here
was defined as rank of scans sorted by scanning date. To
understand the cause for different diagnosis performances, we
analyzed the COVID-infectious slice locating results in different
subsets of COVID-19 patients (Fig. 5b). Subjects from
LIDC–IDRI and Tianchi-Alibaba were anonymized so that the
analysis were not done on them.

A subset of the patients in the database have multistage CTs.
We compared the diagnostic performance of stage I and stage II
and fusion of them. The experiment suggested that the
performance of the AI system was independent of the progress
of the disease because there were no significant qualitative
differences between performances of different stages. We did not
test more complex fusion methods which may overestimate the
performance, since most non-pneumonia and CAP subjects have
only one stage CT.

A subset of COVID-19 and CAP subjects in the database have
localizer scans along with CT scans. The localizer scans of CTs
are very similar to CXR, but typically noisier. We used this subset
to study performances of CT vs. CXR. We developed a CNN-
based classification algorithm to discriminate COVID-19 from

CAP using these localizer scans (described in “Methods” and
Supplementary Methods). Experiments on subjects with both
types of data showed that CT-based system performed signifi-
cantly better (Fig. 2d and Table 2d, p < 0.001). Representative
examples are given in Fig. 6. CXR worked better than CTs only in
a few cases (4 in 1022 cases), in which CTs had artifacts caused by
breathing. But we also found some CTs with artifacts that were
diagnosed correctly. To better understand the relationship
between motion artifacts and diagnosis performance, further
study with more specifically collected data is required (e.g.,
Fig. 6c). By fusion with CXR using simple score-level averaging, a
slight benefit would be acquired compared to using CT only.
Figure 6e showed an example that the result was corrected after
fusion, while when CXR was in low quality, fusion can also bring
in errors (e.g. Fig. 6f). A better fusion method might help achieve
better performance, such as fusion in feature-level when training
deep networks.

Interpreting the AI system. After proper training of the deep
network, Guided gradient-weighted Class Activation Mapping
(Guided Grad-CAM)34 was exploited to explain the “black box”
system and extract attentional areas, which is connected to the
back end of the diagnostic model (Supplementary Fig. 4). Fig-
ure 7a shows some representative subjects for the visualization of
Guided Grad-CAM to determine the attentional regions for each
category. We used t-SNE35 to map 2048-dimensional deep fea-
tures to 2D plane (Fig. 7b), and the result showed that our model
extracted powerful features to separate different categories in
latent space.

Table 3 Reader study statistics and results.

Reader information

Reads per year Years of experience Reads on COVID-19

a
Reader 1 3000–4000 5 500–600
Reader 2 4000–5000 10 500–600
Reader 3 4000–5000 11 600–700
Reader 4 3000–4000 8 600–700
Reader 5 3000–4000 7 500–600

All reader Any reader

Correct Wrong Correct Wrong

b
AI Pneumonia-or-non-pneumonia Correct 97 0 95 2

Wrong 2 1 2 1
CAP-or-COVID Correct 92 2 69 23

Wrong 5 1 5 3
Influenza -or-COVID Correct 44 3 24 20

Wrong 3 0 3 3

Reader 1 Reader 2 Reader 3 Reader 4 Reader 5

Correct Wrong Correct Wrong Correct Wrong Correct Wrong Correct Wrong

c
AI Pneumonia-or-non-pneumonia Correct 96 1 96 1 96 1 96 1 96 1

Wrong 2 1 2 1 2 1 2 1 2 1
CAP-or-COVID Correct 86 7 81 12 85 8 82 11 80 13

Wrong 6 1 4 3 6 1 5 2 5 2
Influenza-or-COVID Correct 33 11 31 13 34 10 35 9 35 9

Wrong 5 1 3 3 5 1 5 1 4 2

a Experience levels of the five radiologists involved in the reader study. b Comparison of diagnostic error between the AI system and human readers. In Any reader column, readers are deemed as wrong
if anyone is wrong, otherwise deemed as correct. In All reader column, readers are deemed as wrong if all were wrong, otherwise deemed as correct. AI diagnosis was made at 0.5 threshold. c
Comparison of diagnostic performances between the AI system and every human reader.
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We performed radiomics36 feature extraction on these
attentional regions, and obtained a total of 665-dimensional
imaging features. The Least Absolute Shrinkage and Selection
Algorithm (LASSO) were used to find the most discriminative 12
features in distinguishing COVID-19 from other pneumonia.
Three additional features were also extracted for the attentional
regions, distance feature, 2D margin fractal dimension, and 3D
grayscale mesh fractal dimension (“Phenotype feature extraction”
in “Methods”). The statistics of these features were consistent to
previous literature37 on the pathogenesis and morphology of
COVID-19. The selected features were used to explain the
imaging characteristics in CT (“Phenotype feature analysis” in
“Methods”), and t-test and Kolmogorov–Smirnov (KS) test were
performed to statistically analyze those features (Supplementary
Figs. 7–9). According to the statistical analysis, we found that all
features selected to distinguish CAP and COVID-19 were
significant in t-test. KS test is used to test whether two groups
of value come from two distributions, according to which
wavelet-LL_firstorder_10Percentile and diagnostics_Image-
original_Mean can help divide CAP and COVID-19 into two
distributions. However, results for distinguishing influenza-A/B
and COVID-19 were all not significant, which infers that
radiomics features of attentional areas of influenza and
COVID-19 have little difference. Cluster heatmaps after LASSO
are also shown in Supplementary Figs. 7 and 8, according to
which, we can know whether different classes were divided to
different clusters by the selected features. Such figures allow us to
understand the relationship between feature-level findings and
image-level findings, which will be listed in “Discussion” and
“Phenotype feature analysis” in “Methods”.

Discussion
In this study, we developed an AI system for diagnosis of
COVID-19, CAP, influenza, and non-pneumonia. The multi-way
AUC of the system is 0.9781 on our test cohort and 0.9299 on the
publicly available CC-CCII database, and the AUC is 0.9325 on
the publicly available MosMedData database. Even though CC-
CCII does not provide the original CT volumes, our method can

still work well. Although subjects in MosMedData are from
Russia, while the training data all come from China, the system
seems to generalize well. Furthermore, in the reader study, the
diagnostic accuracy of the AI system outperformed experienced
radiologists in two tasks from the outbreak center, with AUC of
0.9869, 0.9727, and 0.9585 separately for pneumonia-or-non-
pneumonia, CAP-or-COVID-19, and influenza-or-COVID-19
tasks. In the reader study, the average reading time of radi-
ologists was 6.5 min, while that of AI system was 2.73 s, which can
significantly improve the productivity of radiologists. Only in
pneumonia-or-non-pneumonia cohort, the AI system worked
slightly worse than human readers. In those more challenging
tasks, the AI system worked better than human readers. For
diagnosis between CAP and COVID-19, when the AI system
misclassified, the radiologists were also wrong in 37.5% (3/8) of
subjects (Table 3b), indicating that the diagnosis of these cases is
challenging. And for influenza-A/B, that number is 50% (3/6).
Meanwhile, we found that 88.5% (23/26) and 86.9% (20/23) of
errors made by radiologists in those two tasks were correctly
classified by the AI system. Differentiating COVID-19 from
influenza is very difficult for human (76% accuracy averaged), but
our AI system reached a good performance. It means that the AI
system can be used as an effective independent reader to provide
reference suggestions. Besides, with a highly sensitivity setting, it
can screen out suspicious patients for radiologists to confirm;
with a high accuracy setting, it can give possible diagnosis error
warnings made by radiologists.

To further understand the performance of the AI system, we
evaluated it on subsets divided by gender, age, and stage (Fig. 5a,
b), which can assist decision-making in different populations.
According to Fig. 5a, b, the number of infectious slices was
changed with age, and the diagnostic performance was also
changed with age. We concluded that young people might have
less infectious area, resulting in lower diagnostic performance.
The results on the subsets divided by gender showed little dif-
ference on infectious slices, but the average AUC for man was
higher than that for women. This is consistent with the conclu-
sion of Xiong et al.38 that women have higher antiviral immunity
than men, so that it was harder for AI to find out diagnostic clues
in CTs of women. The results of different stages showed that the
performance of the AI system had little correlation with the stages
of CT scans. Fusion of stages can slightly improve the
performances.

CXR is also considered as a possible way to diagnose COVID-
19. According to Figs. 2d and 6, CXR had diagnostic value though
it was generally not better than CT. As far as our survey, we are
the first to compare CT and CXR performances in a paired
cohort, which makes the comparison result more convincing.
Importantly, the performance of CXR might be underestimated
because localizer scans are in poor quality compared to normal
CXR. Nevertheless, localizer CXR might be the best possible data
to compare CT against CXR, since there is currently no dataset
with paired CT and normal CXR captured in a very small
interval.

According to Grad-CAM, we found that the AI system focused
on different regions depending on the types of pneumonias. For
CAPs, it generally ignored GGO which might also occur in
COVID-19, and focused on effusion and consolidation adjacent
to the pleura. On the other hand, the AI system focused on GGO
rather than consolidation for most COVID-19 subjects. For
influenza and COVID-19, Grad-CAM displays similar concerns,
such as stripe consolidation and GGO, but the AI system is still
able to distinguish the two correctly. We speculated that the AI
system will focus on specific regions where other types of pneu-
monias may be rare. T-SNE clearly showed that deep features
provided by our AI system can divide different types of

a b

c d

Human error: influenza   COVID-19Human error: COVID-19   CAP

AI error: CAP   COVID-19 AI error: COVID-19   CAP

Fig. 4 Examples of incorrect classifications by human readers and the AI
system. a CT image of a patient with COVID-19 that all five readers
misclassified as CAP. b CT image of a patient with influenza that all five
readers misclassified it to COVID-19. c CT image of a patient with COVID-
19 that was misdiagnosed as CAP by AI. d CT image of a patient with CAP
that AI diagnosed incorrectly as COVID-19. The blue arrows point out some
infectious lesions.
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pneumonias into different clusters, as shown in Fig. 7b, and
especially COVID-19 subjects were mapped to more than one
clusters. By visualizing the raw images of the feature points,
COVID-19 was found to have several types of presentations (left,
upper, and right), which were enclosed by the red borders.

Samples in left cluster of COVID-19 were most in early and mild
stage, which have small GGOs with nearly round shape. Samples
in right cluster had larger lesions and some of them had crazy
paving patterns. Fibration and consolidation could be found in
the upper cluster whose size of lesion was generally between other
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Fig. 5 Statistics on different subsets of subjects in test cohort. a AUC scores for each category on different subsets. b Distribution of ratio of COVID-
infectious slices on different subsets of COVID-19 patients.
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clusters. Although visualization by t-SNE was a conjecture for
extracting features from the network, we can clearly find that
patients of COVID-19 may be divided into different subclasses.

Further, we provided a visual interpretation of the system’s
decision by performing a radiomics analysis to obtain diag-
nostically relevant phenotypic characteristics of the attentional
regions that are mapped to the original CT image. By visualizing
the diagnostic results and the phenotype analysis, we found that
the spatial distribution of the attentional region, morphology, and
the texture within it are consistent with the characteristics of
COVID-19 as reported in previous manual diagnosis studies6,39,
and we can make pathophysiological and anatomical speculations
on the viral infection process (“Phenotype feature analysis” in
“Methods”).

There are still some drawbacks and future works of this
research. Firstly, collecting more data on more subtypes of
pneumonias or other lung deceases is useful for exploring AI
system with higher diagnosis capability. Secondly, Guided Grad-
CAM can only extract attention region rather than lesion seg-
mentation, while phenotype feature analysis would better be done
on accurate segmentation. Finally, constructing a large dataset
with linked CT and clinical information, especially with infor-
mation of underlying diseases, will enable additional analysis of
the diagnosis system and development of more functionality, such
as decease severity evaluation.

Overall, our AI system has been comprehensively validated on
large multi-class datasets with higher diagnosis performance
than human experts in diagnosing COVID-19. Unlike classical
black box deep learning approaches, by visualizing the AI system
and applying radiomics analysis, it can decode effective
representation of COVID-19 on CT imaging, and potentially lead
to the discovery of new biomarkers. Radiologists could perform
an individualized diagnosis of COVID-19 with the AI system,
adding new driving force for fighting the global spread of
outbreak.

Methods
Development and validation datasets. We retrospectively collected data from
three centers in Wuhan, which are Wuhan Union Hospital, Western Campus of
Wuhan Union Hospital, and Jianghan Mobile Cabin Hospital. The study has
been approved by the institution review board of Wuhan Union Hospital, which
is in charge of three centers. As a retrospective study, the need for informed
consent was waived by the institutional review board. In total, 4260 CT scans
(2529 COVID-19 scans, 1338 CAP scans, 135 influenza-A/B scans, and 258
normal scans) from 3177 subjects (1502 COVID-19 patients, 83 influenza-A/B
patients, 1334 CAP patients except influenza, and 258 healthy subjects) were
collected from multicenters (Table 1). CT volumes of COVID-19 patients were
collected from February 5, 2020 to March 29, 2020, and all these patients were
confirmed as COVID-19 by RT-PCR. Note that mild COVID-19 patients were
also included because Jianghan Mobile Hospital was designated to treat mild
patients, which increased the difficulty of diagnosis. For subjects with three or
more scans, we excluded the last scan since the last ones might be rehabilitative.
Table 1b shows characteristics of multi-scan data after exclusion. CTs of heathy
subjects are from physical examinations of Union Hospital from January 2, 2020
to February 2, 2020. All these subjects were PCR negative and no pneumonia
signs were found in their CTs according to CT diagnosis reports. CAP volumes
were collected from January, 2019 to November, 2019. The CAP cases in our
cohort were all nonviral pneumonias. Influenza-A/B volumes were collected
from November, 2016 to November, 2019. All CAP and influenza subjects were
retrospective and confirmed subjects who should not be COVID-19 according to
study dates.

LIDC–IDRI and Tianchi-Alibaba are both databases for lung nodule
detection with separately 1009 and 1200 scans available. All subjects of them
suffered from benign or malignant lung nodules. Because nodules have totally
different presentations, we set up a category “non-pneumonia” to cover both
healthy subjects from Wuhan and subjects from LIDC–IDRI and Tianchi-Alibaba.

All above data (except CC-CCII and MosMedData) were randomly divided into
training and test cohorts, with no overlapping subjects. The ratio of division is
roughly 1:1. As a result, the cohort division is:

1. Training cohort: 2688 subjects (3263 scans) were assigned to training
cohort which contained 1230 non-pneumonia, 666 CAP, 41 influenza-A/B,
and 751 COVID-19 subjects. In this cohort, 198 CAP subjects (198 scans)
and 468 COVID-19 subjects (725 scans) had localizer scans, which were
considered as paired CXR and the CXRs were used to train CXR diagnosis
network.

2. Test cohort: 2688 subjects (3199 scans) were assigned to test cohort, which
contained 1229 non-pneumonia subjects, 668 CAP, 42 influenza-A/B, and
751 COVID-19 subjects. In this cohort, 220 CAP subjects (220 scans) and

COVID-19

CAP COVID-19
a

c

e

b

d

fCAP COVID-19

COVID-19

Fig. 6 Representative diagnosis results of CT-based AI system and CXR-based AI system. a An example that both CXR and CT were wrong. b An
example that both CXR and CT were correct. c An example that CXR was correct, CT was wrong, and fusion result was wrong. d An example that CT was
correct, CXR was wrong, and fusion result was correct. e An example that CXR was correct, CT was wrong, and fusion was correct. f A case that CXR was
wrong, CT was correct, and fusion was wrong. Note: the true classes were annotated at the upper right of every images.
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469 COVID-19 subjects (802 scans) had localizer scans, which were
considered as paired CXR. This part of data were used to evaluate CT
performance compared with CXR.

3. CC-CCII test cohort: due to different category definition of CC-CCII
database, we evaluated our system on it as an external independent test
cohort. All its 2539 subjects (3784 scans) were used only in the test, we took
the “common pneumonia” of CC-CCII as CAP together with influenza of

our system in experiments. Since CC-CCII database shares only processed
image slices, from which the original CT values cannot be obtained, and the
definition of categories is different, the diagnosis performance could be a
little lower.

4. MosMedData test cohort: in this database, COVID-19 cases were separated
into four categories: mild, moderate, severe, and critical. Since our AI system
was trained to perform COVID-19 detection, all four categories were labeled

Influenza
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COVID
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Fig. 7 Interpreting the AI system. a Visualizing feature maps via Grad-CAM. Notes: two slices of each of three representative subjects are used for the
visualization of AI diagnosis. From left to right: original CT image; coarse-resolution attentional regions overlaid on CT image; high-resolution attentional
regions with fine granularity; and binarized maps of region of attention obtained from Guided Grad-CAM. b Visualizing features via t-SNE.
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as COVID-19. As a result, there are 254 non-pneumonia and 856 COVID-
19 cases in this cohort.

Development of deep learning modules. The lung segmentation module is
implemented based on U-Net40, which is a 2D semantic segmentation network. All
CTs are in 3D, so we trained and tested the segmentation model slice by slice. The
training slices were extracted from chest CTs in the training cohort and annota-
tions of lung segmentation were obtained manually. Lung segmentations worked as
masks and region boxes in diagnosis module, which were merged with raw images
into a multichannel image as the input of classification network (described in
Supplementary Methods).

The slice diagnosis module is a 2D classification deep network whose backbone
is ResNet152 (ref. 41). The parameters of ResNet152 were pretrained on a huge
dataset ImageNet9 for better and faster convergence. We tested a 3D classification
network, but this 2D scheme showed much better performance and 3D network
might not work if GPU memory is limited (even 11 G memory might not be able to
process one volume of high resolution). In order to eliminate the influence of
different scanners and factors on the diagnosis, the inputs of slice diagnosis module
were lung-masked slices, which had been cropped out along their lung bounding
boxes, and segmentation mask. The outputs of the classification network were four
scores, respectively, representing confidence levels of being four categories (three
categories for CC-CCII database). Slices for training this network were extracted
from training scans, and the extraction process is explained in Supplementary
Methods.

A task-specific fusion block is used to get a volume/case-level prediction from
slice-level results. Because one volume is regarded as pneumonia infected if any one
of its slices is diagnosed as infected, the fused scores of three pneumonia classes
(CAP, Influenza, and COVID-19) were obtained by averaging the top-K highest
scores of each class (K was 3, chosen by experiments) in all slices and the non-
pneumonia score is obtained by averaging all slices. More details of the hyper-
parameter choice are stated in Supplementary Methods. If the task is specific to
distinguish non-pneumonia and pneumonia subjects, all pneumonia scores of a
slice will be summed up. If the task is specific to distinguish COVID-19 from other
pneumonia, the scores of other classes will be muted in the fusion block. To
measure the diagnostic performance, AUC, sensitivity, and specificity (with default
threshold 0.5) are computed on test cohort.

COVID-infectious slice locating module has the same structure as the slice
diagnosis module, but it was trained and evaluated only on a set of COVID-19-
positive subjects whose slices with lesions have been marked manually. All training
samples of this module came from training cohort, and evaluation samples came
from test cohort.

We used Guided Grad-CAM to obtain attentional regions as interpreting block
of our system. Guided Grad-CAM has the advantage that it not only generates a
heat map to locate the relevant area, but also produces a coarse localization map
highlighting the important regions in the image for predicting the result. Guided
Grad-CAM may also give more detailed diagnosis suggestions in addition to
classification results. Also, the attentional regions were used in latter feature
extraction and analysis to get more detailed information about lesion areas. We
extracted region of attention by binarizing the output of Guided Grad-CAM
followed by some morphological operations.

T-SNE was done based on features from slice diagnosis module, which are
obtained by max-pooling feature maps of all slices before the last fully connected
layer. Therefore, every CT volume was mapped to a 2048-D latent feature vector
for t-SNE analysis.

All the deep learning blocks were implemented using PyTorch (version 1.3.1)42.
T-SNE was implemented using scikit-learn (version 0.22) package. Numpy (version
1.15.3) and scipy (version 1.3.3) were also used in analysis.

Reader study. In order to analyze the performance, we set up three different
reader study cohorts for different diagnosis tasks, which were acquired by ran-
domly selecting subjects from test cohort:

1. Pneumonia-or-non-pneumonia cohort: 100 subjects (50 non-pneumonia
subjects, 25 CAP subjects, and 25 COVID-19 subjects from three centers)
were assigned. This cohort was used to compare results of the AI system
with radiologists in diagnosis of pneumonia.

2. CAP-or-COVID-19 cohort: 100 subjects (50 CAP subjects and 50 COVID-
19 subjects from three centers) were assigned. This cohort was used to
compare results of the AI system with radiologists in distinguishing
COVID-19 from CAP.

3. Influenza-or-COVID-19 cohort: 50 subjects (20 influenza-A/B subjects and
30 COVID-19 subjects from three centers) were assigned. This cohort was
used to compare results of the AI system with radiologists in distinguishing
COVID-19 from influenza-A/B.

We invited five experienced radiologists in our experiments from the radiology
department of Wuhan Union Hospital, which is in the center of the epidemic area
with the most patients in this outbreak in China. They all have read over 400 CTs
of COVID-19 in the past 3 months. Five radiologists had an average of 8 years of

clinical experience in the imaging diagnosis of pulmonary diseases, as detailed in
Table 3a.

The human radiologists were aware of the tasks and the possible classes in
reader cohort when reading. For example, they were informed that only CAP
and COVID-19 subjects were collected in CAP-or-COVID cohort. Besides,
readers can choose any window of gray value, and zoom in or out when reading
CT volumes using Slicer 4.10.2 software while our system used fixed size
resample images (224 × 224 × 35) with fixed gray value window (−1200, 700) for
all volumes.

Attentional region extraction. To analyze the differences of imaging phenotype
between different pneumonia, features were extracted in the attentional regions
determined by binarizing Grad-CAM maps followed by morphological proces-
sing. We only kept the regions with valid size (>200 pixels within margin of lung
mask). We extracted attentional regions only in pneumonia subjects in test
cohort.

Phenotype feature extraction. Radiomics features widely used in tumor diagnosis
were extracted. These features were composed of different image transforms and
feature matrix calculations. We adopted three image transforms: original image,
transformed image by Laplacian of Gaussian operator, and transformed image
by wavelet. For each image after the operation of a transform, six series of features
are extracted, including first order features, Gray Level Co-occurrence Matrix, Gray
Level Size Zone Matrix, Gray Level Run Length Matrix, Neighboring Gray
Tone Difference Matrix, and Gray Level Dependence Matrix. Radiomics analysis
was performed using python version 3.6 and the pyradiomics (version 2.2.0)
package36.

The distance feature was defined as the distance between the center of gravity of
the region of interest (obtained by Grad-CAM) and the edge of the lung (obtained
by lung segmentation results). Besides, 2D contour fractal dimension and 3D
grayscale mesh fractal dimension of the attentional region were extracted. The
fractal dimension describes the degree of curvature of a curve or surface.

LASSO logistic regression model was used to choose most discriminative
features in all extracted ones. LASSO analysis was performed using python version
3.6 and the scikit-learn package.

Phenotype feature analysis. For distance feature (Supplementary Fig. 9a), there
were two peaks of distances of COVID-19 that were generally 0–30 pixels (2.5
mm/pixel) from the pleura and a little amount of which were >100 pixels. That is
different with other distributions that most of CAPs were not >40 pixels to
pleura. Distribution of influenza-A/B was flatter, which is consistent with ana-
tomical findings on COVID-19. We found that the distribution was consistent
with pathological study. When the SARS-Cov2 virus is inhaled through the
airways, it mainly invades the deep bronchioles, causing inflammation of the
bronchioles, and their surroundings to damage alveolar43,44. These areas have
well-established immune system and well-developed pulmonary lobules, leading
to a strong inflammatory response45,46. Secondly, because region of attention
obtained by Grad-CAM could not delineate the lesion accurately, there were
little differences among three types of pneumonia in fractal dimension (Sup-
plementary Fig. 9b). Thirdly, COVID-19 was a little fickler in gray value com-
pared to others with higher 3D fractal dimension, while CAP had two peaks in
this feature. According to p-value, distance feature and 3D fractal dimension
can help distinguish CAP and COVID-19, whereas the 2D fractal dimension
showed little information (Supplementary Fig. 9c). No significant difference
could be found between influenza-A/B and COVID-19 on those features and
according to KS test only distance feature is significative to distinguish CAP and
COVID-19.

According to all selected features, we can describe in depth the relationship
between the medical findings and typical patterns of COVID-19 (some examples
are shown in Supplementary Fig. 5). (I) Halo and antihalo pattern: the halo
pattern was speculated to be that the lesions (mainly the central node of the
lobular) infiltrated into the surrounding interstitium and developed the
aggregation of inflammatory cells in the interstitium. Antihalo pattern was
ground glass shadow surrounded by the high-density consolidation. The reasons
why this sign appeared may be that the inflammatory repair was dominated by
the edge, leading to the formation of a band shadow tending to consolidation at
the edge, while the central repair was relatively slow. (II) Pleural parallel signs:
the formation mechanism was speculated as follows: when the COVID-19
invaded the interstitium around the alveoli, the lymphatic return direction was
subpleural and interlobular septa, and diffused into pleural side and bilateral
interlobular septum47. Because of the limitation of the pleura at the distal end,
the lymph can only cling to the pleura and spread along the reticular structure of
the interlobular septal margin on both sides. In addition, the fusion of the
subpleural lesions resulted in the long axis of the lesions parallel to the pleura.
(III) Vascular thickening: it was consistent with the rules of inflammation
production. The inflammatory increased vascular permeability, caused
telangiectasia, further caused pulmonary artery thickening46,48. (IV) The fine
mesh feature of large area: the COVID-19 mainly invaded the interstitium in the
lobules, so it appeared as confluent fine mesh (crazy paving). (V) The density-
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increased GGO. This kind of GGO was transforming to consolidation. The
consolidation edges were flat or contracted, and fiber strands appeared.
Compared with COVID-19, influenza showed higher density on the lesion area,
which can be inferred that they caused slightly less alveolitis and GGO patterns.
As a result of bronchiolitis, influenza virus pneumonia was more likely to form
tree-bud signs, and occasionally hyperlucent lung.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Four databases in our experiments are publicly available. LIDC–IDRI database can be
accessed at https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI. Tianchi-
Alibaba database can be accessed at the webpage (https://tianchi.aliyun.com/
competition/entrance/231601/information?lang=en-us) of the challenge after
registration. CC-CCII database can be accessed at http://ncov-ai.big.ac.cn/download.
MosMedData database is available at https://mosmed.ai/en/. The datasets from Wuhan
Union Hospital, Western Campus of Wuhan Union Hospital, and Jianghan Mobile
Cabin Hospital were used under the license of the current study from Union Hospital,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
(2020/0030), so they are not publicly available. Interested readers may contact Heshui Shi
for further information about these datasets. Source data are provided with this paper.

Code availability
To help combat with COVID-19 which is spreading around the world, we decided to
opensource our AI system to facilitate testing and further development. The project can
be forked from https://github.com/ChenWWWeixiang/diagnosis_covid19.
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